

PETROVSKY NATIONAL RESEARCH CENTRE OF SURGERY (FSBSI « PETROVSKY NRCS») MOSCOW



## **Solutions for Optimal Cardiac Resynchronization Therapy**

## Dr. DMITRIY PODOLYAK







### Heart Failure

This is a pathophysiological syndrome in which, as a result of one or another disease of the cardiovascular system, there is a decrease in the pumping function of the heart, which leads to an imbalance between the hemodynamic demand of the body and the capabilities of the heart.



#### **Epidemiology Heart Failure**

26- million people in the world. By 2030 y.- 30 mln. p.

In Russia, *HF (I-IV) NYHA* (2016 г) - 14,9 mln.p.

Among them, in severe form - 6,0 mln.p. *ΦK III-IV NYHA* 

One – year mortality is 880-980 thousand people.

Risks of Cause-Specific Death after Hospitalization patients with Heart Failure





# The main goals of treatment of patients with HF

# 1. Elimination of clinical symptoms

2. Prevention of target organ damage

3.Risk reduction SCD

4.Improving the quality and duration of life



## Guideline-Directed Medical Therapy (GDMT)



DeFilippis et al; Waiting Period Before ICD Implantation Circ Heart Fail. 2017



# Surgical methods of treatment HF

Cardiac Resynchronization Therapy (CRT) Cardiac Contractility Modulation (CCM) Left Ventricular Assist Device (LVAD) Orthotopic heart transplantation



## Cardiac Resynchronization Therapy





Reduction in overall mortality by 29% Reduction in mortality due to progressive HF by 38%

MIRACLE, COMPANION, CARE-HF, REVERSE, MADIT-CRT, RAFT. able 1 2022 AHA/ACC/HFSA guidelines for the management of heart failure

| COR | RECOMMENDATIONS                                                                               |
|-----|-----------------------------------------------------------------------------------------------|
| 1   | For patients who have LVEF < 35%, sinus rhythm, left bundle branch block (LBBB) with a        |
|     | QRS duration ≥150 ms, and NYHA class II, III, or ambulatory IV symptoms on GDMT, CRT is       |
|     | indicated to reduce total mortality, reduce hospitalizations, and improve symptoms and        |
|     | QOL                                                                                           |
|     | For patients who have LVEF≤ 35%, sinus rhythm, LBBB with a QRS duration of ≥150 ms, an        |
|     | NYHA class II, III, or ambulatory IV symptoms on GDMT, CRT implantation provides high         |
|     | economic value.                                                                               |
| 2A  | For patients who have LVEF ≤35%, sinus rhythm, a non-LBBB pattern with a QRS duration         |
|     | ≥150 ms, and NYHA class II, III, or ambulatory class IV symptoms on GDMT, CRT can be          |
|     | useful to reduce total mortality, reduce hospitalizations, and improve symptoms and QOL.      |
| 2A  | In patients with high-degree or complete heart block and LVEF of 36% to 50%, CRT is           |
|     | reasonable to reduce total mortality, reduce hospitalizations, and improve symptoms and       |
|     | QOL.                                                                                          |
| 2A  | For patients who have LVEF <35%, sinus rhythm, LBBB with a QRS duration of 120 to 149         |
|     | ms, and NYHA class II, III, or ambulatory IV symptoms on GDMT, CRT can be useful to           |
|     | reduce total mortality, reduce hospitalizations, and improve symptoms and QOL.                |
| 2A  | In patients with AF and LVEF <35% on GDMT, CRT can be useful to reduce total mortality,       |
|     | improve symptoms and QOL, and increase LVEF, if: a) the patient requires ventricular          |
|     | pacing or otherwise meets CRT criteria and b) atrioventricular nodal ablation or              |
|     | pharmacological rate control will allow near 100% ventricular pacing with CRT.                |
| 2A  | For patients on GDMT who have LVEF ≤35% and are undergoing placement of a new or              |
|     | replacement device implantation with anticipated requirement for significant (>40%)           |
|     | ventricular pacing, CRT can be useful to reduce total mortality, reduce hospitalizations, and |
|     | improve symptoms and QOL.                                                                     |
| 2B  | For patients who have LVEF <35%, sinus rhythm, a non-LBBB pattern with QRS duration of        |
|     | 120 to 149 ms, and NYHA class III or ambulatory class IV on GDMT, CRT may be considered       |
|     | to reduce total mortality, reduce hospitalizations, and improve symptoms and QOL.             |
| 2B  | For patients who have LVEF ≤30%, ischemic cause of HF, sinus rhythm, LBBB with a QRS          |
|     | duration ≥150 ms, and NYHA class I symptoms on GDMT, CRT may be considered to reduce          |
|     | hospitalizations and improve symptoms and QOL.                                                |
| 3   | In patients with QRS duration <120 ms, CRT is not recommended.                                |
| 3   | For patients with NYHA class I or II symptoms and non-LBBB pattern with QRS duration <        |
|     | 150 ms, CRT is not recommended.                                                               |
| 3   | For patients whose comorbidities or frailty limit survival with good functional capacity to < |
|     | 1 year, ICD and cardiac resynchronization therapy with defibrillation (CRT-D) are not         |
|     | indicated.                                                                                    |
|     |                                                                                               |



Sinoatrial node

Bundle of His

Right bundle branch

Dyssynchrony is a pathological dissociation of contraction or relaxation of individual chambers of the heart and segments of the myocardium as a result of disturbances in impulse conduction, which leads to a violation of the contractility of the heart and an increase in energy consumption by the myocardium.











# ECG – parameters LBBB. (QRS duration and morphology)

| ECG parameter for complete LBBB                                                | ESC | AHA | Strauss   | MADIT | REVERSE |
|--------------------------------------------------------------------------------|-----|-----|-----------|-------|---------|
| QRS duration (ms) $\geq$                                                       | 120 | 120 | 9130 ∂140 | 130   | 120     |
| QS or rS in V <sub>1</sub>                                                     | Yes | Yes | Yes       | Yes   | Yes     |
| Positive T in V <sub>1</sub>                                                   | Yes | No  | No        | No    | No      |
| Normal ID R in V <sub>1</sub> –V <sub>3</sub>                                  | No  | Yes | No        | No    | No      |
| ID R in $V_5 \ge 60$ ms                                                        | No  | Yes | No        | No    | No      |
| ID R in $V_6 \ge 60$ ms                                                        | Yes | Yes | No        | No    | No      |
| ID R in I $\geq$ 60 ms                                                         | Yes | No  | No        | No    | No      |
| Notch-/slurred R in I, aVL and V <sub>5</sub> -V <sub>6</sub>                  | No  | Yes | No        | No    | No      |
| Mid-QRS notch/slurring in $\geq 2$ leads of $V_1 - V_2$ , $V_5 - V_6$ , I, aVL | No  | No  | Yes       | No    | No      |
| RS pattern allowed in V <sub>5</sub> -V <sub>6</sub>                           | No  | Yes | Yes       | Yes   | Yes     |
| Absent q in $V_5 - V_6$                                                        | No  | Yes | No        | Yes   | Yes     |
| Absent q in I                                                                  | No  | Yes | No        | No    | No      |
| QS with positive T in aVR                                                      | Yes | No  | No        | No    | No      |
| Usually discordant T                                                           | Yes | Yes | No        | No    | No      |

C.J.M. van Deursen et al. / Journal of Electrocardiology 47 (2014) 202-211



## Who Responds to CRT?

Overall response rate 70%



Significant dyssynchrony

LBBB, QRSD > 150 msec. 3D ECHO IVD >40 msec.

• Minimal lateral LV scar

 $MPI/SPECT/MRI \le 13-15\%$ 

• Adequate CS anatomy

Lead placement Pace site of latest activation



The Magnitude of the Problem and the issues. Circ J 2011;75:521-7.

### Understanding non -response to cardiac resynchronization therapy



Wilfried Mullens, Petra Nijst Journal of the American College of Cardiology. 2017 69(17):2130–2133



## Decision Tree for CRT Non-responders





## **Coronary venous anatomy**

The coronary venous tree as seen on a rotational angiogram.



LAO







Posterior

LV



## Pressure-volume (PV) loops from a patient with LBBB



O. A. Breithardt et al. Multisite pacing as a new treatment option in heart failure

![](_page_14_Picture_0.jpeg)

# Non-invasive Activation Mapping of the Heart

![](_page_14_Figure_2.jpeg)

![](_page_14_Picture_3.jpeg)

### CRT – Optimization Adaptiv CRT (Adaptiv BiV + LV)

LV compared to BiV pacing: Do you really need RV pacing?

![](_page_15_Figure_2.jpeg)

## Adaptive LV Pacing

#### Normal AV Conduction

![](_page_15_Picture_5.jpeg)

Adaptive LV pacing leverages intrinsic RV conduction by pre-pacing the LV to synchronize with intrinsic RV activation.

- AdaptivCRT<sup>®</sup> promotes physiologic pacing by reducing RV pacing by 44%<sup>1</sup>
- In addition to the potential for an increase in CRT response, reducing RV pacing increases device longevity<sup>1,2</sup>

![](_page_15_Figure_9.jpeg)

#### TOTAL SURVIVAL ADAPTIVCRT VERSUS STANDARD CRT

![](_page_15_Figure_11.jpeg)

\*Patients who received AdaptivCRT were associated with a 29% relative reduction in all-cause mortality versus conventional CRT (after adjusting for other potential risk factors including age, gender, LVEF, NYHA class, QRS duration, AF, CAD, hypertension, AV block, and LBBB).

Adaptive LV pacing

![](_page_16_Picture_0.jpeg)

## **Effective CRT During AF Algorithm**

| DD                               | All Of                                       | Re                             | sume Suspend                                             |                |                             |          |        |                  |                               |
|----------------------------------|----------------------------------------------|--------------------------------|----------------------------------------------------------|----------------|-----------------------------|----------|--------|------------------|-------------------------------|
| 0 bpm /                          | / 860 ms                                     |                                | ₿ <sub>1</sub>                                           | ₿ <sub>1</sub> | ₿ <sub>1</sub>              | ß        | Ê      | ₿ <mark>□</mark> |                               |
| GM2: F                           |                                              |                                | ₽<br>₽                                                   | B              | ₽ <sup>1</sup>              | <b>B</b> | B      | Ŗ                | Adjust                        |
| arame                            | eters - P                                    | acing                          |                                                          |                |                             |          |        |                  |                               |
| Jode                             | Modes/F                                      | tates                          | Amplitude                                                | A<br>31        | trial                       | RV       | 1 4    | LV               |                               |
| Addi                             | tional Fe                                    | turas                          |                                                          |                | 2                           | 2010.0   | -      | 10 A             | Checklist                     |
| V. Se<br>Atrial<br>Cond<br>V. Ra | nse Res<br>Trackin<br>lucted Af<br>ate Stabi | Conducte<br>Respons<br>Maximum | ed AF Response<br>le Level<br>n Rate<br>o <b>Pending</b> |                | n j<br>edium<br>20 ppm<br>Ж |          |        |                  | < Data<br>< Parama<br>< Tests |
| late A                           | daptive                                      | 0#                             | J                                                        | Indo Pendi     | ng Pr                       |          | PRO    | IGRAM            | Patient                       |
| 🙌 E                              | mergency                                     |                                | Inte                                                     | errogate       |                             |          | End Se | ssion            | < Session                     |

### Conducted AF Response

![](_page_16_Figure_4.jpeg)

The EffectivCRT<sup>™</sup> During AF Algorithm automatically changes the pacing rate to increase effective CRT delivery during AF by up to 15%<sup>1</sup>

EffectivCRT During AF increased effective pacing, from 81% to 88% (p < 0.001).</li>

Heart rate increased by 3 beats per minute, from 77 to 80 BPM (p < 0.001).</li>

Patients with baseline (< 80%) paced received the greatest benefit.</li>

![](_page_16_Figure_9.jpeg)

| AdaptivCRT            | Adaptive Bi-V and LV  |
|-----------------------|-----------------------|
| V. Pacing             | LV->RV Ø              |
| V-V Pace Delay        | 0 ms 🕼                |
| Paced AV              | 130 ms 🗊              |
| Sensed AV             | 100 ms 🕼              |
| EffectivCRT During AF | On                    |
| Maximum Rate          | 110 bpm               |
| Rate Histograms       | $\searrow$            |
| CardioSync            | $\left \right\rangle$ |

![](_page_17_Picture_0.jpeg)

Case №3. Patient X, 63 y.o. DCM. Paroxysmal AF/AT. VT. LBBB. HF – II-III (NYHA). CRT-D – 2015, Ablation-VT- 2021г, Ablation AF/AT – 10.03. 2021г, re CRT-D + LV lead optimization 23.03.2021г.

![](_page_17_Picture_2.jpeg)

![](_page_18_Picture_0.jpeg)

### New approaches to LV stimulation to improve resynchronization therapy

![](_page_18_Picture_2.jpeg)

![](_page_18_Picture_3.jpeg)

Benefits of using a quadripolar LV lead

## Better CRT

- Implant at most stable location
- Pace at anatomically superior sites for CRT
- Lateral LV, Basal to Mid LV
- Lead stability
- Implant at most stable site
- Least chance of dislodgement
- Pace from available poles

## - Phrenic Nerve Capture

- Change pacing poles to eliminate phrenic capture without moving lead
- Lowest Threshold
- Multiple Pacing Vectors
- Superior vectors for CRT
- Best pacing threshold

# 16 Programmable Pacing Vectors Provide Flexibility in Customizing CRT Delivery for Each Patient

![](_page_18_Picture_20.jpeg)

![](_page_18_Picture_21.jpeg)

![](_page_18_Picture_22.jpeg)

![](_page_18_Picture_23.jpeg)

![](_page_19_Picture_0.jpeg)

# The Family of quadripolar leads

| Lar             | ge              | Sma              | els                 |
|-----------------|-----------------|------------------|---------------------|
| Ves             | ssels           | Vess             |                     |
| Curry           |                 | 00 0             |                     |
| Attain Performa | Attain Performa | Attain Performa  | Attain Stability    |
| 4598            | 4298            | 4398             | Quad 4798           |
| 5.3 Fr; S-shape | 5.3 Fr; double- | 5.3 Fr; straight | 4.4 Fr; single cant |

canted

with tines

with active

fixation side helix

![](_page_19_Picture_3.jpeg)

![](_page_20_Picture_0.jpeg)

Case №2. Patient R. women 72 y.o. Ds: DCM. OA – angioplastic (08.12.2018г). LBBB ( I type). HF - III (NYHA).

![](_page_20_Picture_2.jpeg)

![](_page_20_Figure_3.jpeg)

![](_page_21_Picture_0.jpeg)

### Case № 4 Patient: X., man 57 y.o.

Ds: ICM 2006 г. LIMA - LAD, CABG-DA, DOR – procedure (2007 г.). LBBB. VT. HF - III (NYHA).

![](_page_21_Figure_3.jpeg)

![](_page_21_Figure_4.jpeg)

#### Левый желудочек

КДР- 8,1 см (N до 5,5см), КСР- 7,6 см, тМЖП- 1,0 см, тЗСЛЖ- 1,3 см, КДО- 263 мл, КСО- 193 мл, УО- 70 мл, КДОинд- 108,0 мл/м<sup>2</sup>, КСОинд- 79,3 мл/м<sup>2</sup>, ФИ- 27 % (по Симпсону). VSфкмк-бок 5 см/с (N 7-11 см/с), VSфкмк-перет 3 см/с (N 6-8 см/с) Локальная сократимость верхушка закруглена, перегородочно-верхушечные сегменты представлены рубцовой тканью, акинетичны, визуализируется тень от заплаты (пластика левого желудочка), нельзя исключить наличие тромба в области верхушки, размерами 1,4х2,6, неоднородной эхогенности, с включениями кальция, парадоксальное движение МЖП

| СЕГМЕНТЫ:              |                |                |                |  |  |
|------------------------|----------------|----------------|----------------|--|--|
|                        | Базальный      | Средний        | Верхушечный    |  |  |
| Передний               | нормокинез     | гипокинез      | акинез (рубец) |  |  |
| Передне-перегородочный | акинез (рубец) | акинез (рубец) | заплата        |  |  |
| Перегородочный         | акинез (рубец) | акинез (рубец) | заплата        |  |  |
| Нижний                 | гипо-акинез    | гипо-акинез    | акинез (рубец) |  |  |
| Задний                 | нормокинез     | гипокинез      | акинез (рубец) |  |  |
| Боковой                | нормокинез     | гипокинез      | акинез (рубец) |  |  |

![](_page_21_Picture_8.jpeg)

![](_page_21_Picture_9.jpeg)

![](_page_22_Picture_0.jpeg)

![](_page_22_Picture_1.jpeg)

![](_page_22_Figure_2.jpeg)

![](_page_22_Picture_3.jpeg)

![](_page_23_Picture_0.jpeg)

## Case №5. Patient T. man, 45 y.o. Ds: AV Block - III. IPG (2015г). DCM. HF –II (NYHA). Muscular Dystrophy.

![](_page_23_Figure_2.jpeg)

![](_page_23_Picture_3.jpeg)

![](_page_24_Picture_0.jpeg)

### ECHO before CRTD:

#### Левый желудочек

КДР- 7,5 см (N до 5,5см), КСР- 6,7 см, тМЖП- 1,0 см, тЗСЛЖ- 0,9 см, КДО- 270 мл, КСО- 210 мл, УО- 60 мл, КДОинд- 179,9 мл/м<sup>2</sup>, КСОинд- 139,9 мл/м<sup>2</sup>, <u>ФИ- 22 %</u> (по Симпсону).

VSфкмк-бок 8 см/с (N 7-11 см/с), VSфкмк-перег 8 см/с (N 6-8 см/с)

повышенная трабекулярность стенок, в области верхушки лоцируется несколько поперечных и диагональных хорд

**Локальная сократимость** асинхронное сокращение перегородочно-верхушечных сегментов на фоне работы ЭКС, гипокинез базальных сегментов боковой, нижней, передней, задней стенок, остальные сегменты - диффузный гипо-акинез

Правый желудочек 2,1 см (N до 3,0 см) На уровне ВТПЖ 2,7 см (N 2,1-3,5 см), приточный отдел 3,4 см (N 2,5-4,2 см), средний отдел 1,4 см (N 1,9-3,5 см), длинник 8,0 см (N 5,9-8,6см). VSфктк 11 см/с (N 9-14 см/с)

## ECHO 1 day after CRTD:

#### Левый желудочек

КДО- 245 мл, КСО- 180 мл, УО- 65 мл, КДОинд- мл/м<sup>2</sup>, КСОинд- мл/м<sup>2</sup>, ФИ- 27 % (по Симпсону).

Локальная сократимость асинхронное сокращение перегородочно-верхушечных сегментов на фоне работы ЭКС, остальные сегменты - диффузный гипокинез

#### Оценка асинхронии:

Межжелудочковая (лево-правая) задержка: РЕР (период предизгнания) Ао - ЛА = 170 - 140 = 30 мс (N<40 мс).

![](_page_25_Picture_0.jpeg)

Case Nº6. Patient T. Sergey, man 45 y.o. Ds: DCM. HF –III (NYHA). Muscular Dystrophy. CRT-D Viva Quad XT 02.05.2023r.

![](_page_25_Picture_2.jpeg)

Attain Performa 4298 5.3 Fr; double-

![](_page_25_Figure_4.jpeg)

Левый желудочек

КДР- 7,8 см (N до 5,5см), КСР- 6,5 см, тМЖП- 0,7 см, тЗСЛЖ- 0,8 см, КДО- 353 мл, КСО- 259 мл, УО- 94 мл, КДОинд- 232,0 мл/м<sup>2</sup>, КСОинд- 170,2 мл/м<sup>2</sup>, <u>ФИ- 27 %</u> (по Симпсону). VSфкмк-бок 5 см/с (N 7-11 см/с), VSфкмк-перег 4 см/с (N 6-8 см/с)

повышенная трабекулярность стенок ЛЖ

Локальная сократимость выраженное асинхронное сокращение перегородочно-верхушечных сегментов на фоне БЛНПГ, остальные сегменты - диффузный гипокинез

#### Оценка асинхронии:

Межжелудочковая (лево-правая) задержка: РЕР (период предизгнания) Ао - ЛА = 177 - 81 = 96 мс (N <40 мс).

![](_page_26_Figure_0.jpeg)

![](_page_26_Figure_1.jpeg)

5 – year survival rate was – 162 (87%) 10 – year survival rate was – 153 (82,3%)

![](_page_27_Picture_0.jpeg)

## RESULTS

The experience of surgical treatment of 188 patients with (HF) II-III (NYHA) and typical LBBB (during the observation period 67,4  $\pm$  2,7 m (QRS 167.9  $\pm$  1.5 ms), EF – before CRT-D 27.2%  $\pm$  0.5; after treatment 44,5%  $\pm$  0.9

Implantation of CRT-D/CRT-P with: quadripolar - 28, multipoint pace – 2, bipolar - 153,

epicardial leads – 5.

The 152 patients are currently being monitored; 33(17,7%) -died; heart transplantation -1; explantation CRTD - 2 (pocket infection).

- LV lead repositioning 32 (5 quadripolar LV lead);
- AV node ablation 22;
- -AF/AT/VT ablation-14;
- 5 year survival rate was 162 (87%).
- 10 year survival rate was 153 (82,3%).

Initially the number of non-responders was 29.7%.

After the treatment, the number of non-responders and non – progression decreased to 9%.

![](_page_28_Picture_0.jpeg)

# CONCLUSIONS

- CRT is an affordable and clinically effective treatment for patients with HF and typical left bundle branch block.
- The position of the LV lead is one of the main factors determining the response to CRT.
- Systematic optimization of CRT parameters, the use of a remote monitoring system, optimization of the position of the LV lead using multipoint pacing, AV node/ AF/AT/VT ablation against the background of optimal drug therapy, can improve the quality and life expectancy of patients, as well as significantly reduce the number of non-responders.

![](_page_29_Picture_0.jpeg)

![](_page_29_Picture_1.jpeg)